Reactions of μ-η²-Allenyl Complexes: Coupling of Diphenylacetylene with Ru₂(CO)₆-[u-o,n²-PhCC=CH₂](u-PPh₂) and the X-Ray Crystal Structure of a Novel Tetranuclear $Cyclopentadienyl Complex [Ru₂(CO)₄{ μ - σ (C,O), η ⁷-C₅MePh₂(C₆H₄)(O){ μ -PPh₂]}₂·2C₇H₈$

Susan M. Randall,^a Nicholas J. Taylor,^a Arthur J. Carty,*a Taibi Ben Haddah,**b and Pierre H. Dixneuf*b**

^a*Guelph- Waterloo Centre for Graduate Work in Chemistry, Waterloo Campus, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3GI*

Laboratoire de Chimie de Coordination Organique, Universite de Rennes, Campus de Beaulieu, Rennes, France

The μ - σ , η ²-allenyl complex $Ru_2(CO)_{6}[\mu$ - σ , η ²-PhCC=CH₂ $](\mu$ -PPh₂) reacts with diphenylacetylene to afford a novel tetranuclear cyclopentadienyl complex $[Ru_2(CO)_4\{\mu \cdot \sigma(C, O), \eta^7-C_5MePh_2(C_6H_4)(O)\}\{\mu \cdot PPh_2\}]_2$ *via* allenyl-alkyne coupling: the structure has been determined by X -ray diffraction.

The chemistry of binuclear complexes containing μ - σ , η ²allenyl groups $R^1C=C=CR^2R^3$ is of interest for several reasons: (i) these hydrocarbyls have cumulated double bonds, one of which is co-ordinated while the other is free when the ligand functions as a three-electron donor;¹ (ii) their isomeric counterparts, the μ - η ³-allyl { $R'CC(R^2)C(R^3)$ } compounds are well known and synthetically useful; $2,3$ and (iii) the parent allenyl ligand $-CH=C=CH_2$ is composed of three C_1 fragments, carbide (C), methylidyne (CH), and methylene (CH₂), which have been implicated in various catalytic processes.4 However, the chemistry of these binuclear allenyl compounds is relatively unexplored.² We have previously¹ synthesised a series of binuclear allenyl complexes $[M_2(CO)_6(\mu-\sigma,\eta^2-$ PhC=C=CRR'}(μ -PPh₂)] (\dot{M} = Fe, Ru, or Os; R = R' = H, Me, or Ph) *via* the addition of diazoalkanes to acetylides $[M_2(CO)_6(\mu-\sigma,n^2-C\equiv CPh)(\mu-PPh_2)]$ and we describe here an unusual coupling reaction with diphenylacetylene which affords a novel tetranuclear cyclopentadienyl complex.

Treatment of the allenyl complex **(1)** (0.25 g, 0.37 mmol) with PhC_2Ph (0.10 g, 0.56 mmol) in refluxing toluene (35 ml) for 2 h followed by column chromatography [Florisil; eluant $n-C_7H_{16}-C_7H_8$ (5:1)] afforded a yellow band which gave pale yellow crystals of the cyclopentadienyl complex **(2)** (57%) (from $CH_2Cl_2-C_7H_8$ at $-5^{\circ}C$) (Scheme 1). The only other band (red-brown) afforded, as an orange powder (11%), an as yet uncharacterised complex (from n-heptane). Spectroscopic data for (2) were as follows: i.r. (C_6H_{12}) v(CO) 2098vs, 2048s, 2023vs, 1997s, and 1974s cm⁻¹; ³¹P-{¹H} n.m.r. (CDCl₃;

Figure 1. The molecular structure of $[Ru_2(CO)_4(\mu\text{-}o(C,O),\eta\text{-}C_5MePh_2(C_6H_4)(O)](\mu\text{-}PPh_2)]_2\text{-}2C_7H_8$ (2) showing the atomic numbering. Important bond distances (Å) and angles (°) not included in the text are: $Ru(1) - P2.409(2)$, $Ru(2) - P2.346(2)$, $Ru(2) - O(5)$ 2.119(3), $Ru(2) - O(5)$ 2.229(3), Ru(1)-C(5) 2.288(5), Ru(1)-C(6) 2.233(5), Ru(1)-C(7) 2.231(5), Ru(1)-C(8) 2.270(5), Ru(1)-C(9) 2.277(5), C(5)-C(6) 1.439(7), C(5)-O(5) 1.318(6), C(6)-C(7) 1.441(7), C(7)-C(8) 1.431(8), C(9)-C(5) 1.428(7), C(8)-C(9) 1.450(8); Ru(2)-O(5)-Ru(2') 105.0(1),
Ru(2)-O(5)-C(5) 115.0(2), Ru(2')-O(5)-C(5) 128.1(2), C(4)-Ru(2)-C(12) 175.7(5), C(3)-Ru(2)-O(5 $Ru(2)-O(5)-C(5)$ 115.0(2), $Ru(2')-O(5)-C(5)$ 128.1(2), $C(4)-Ru(2)-C(12)$ 175.7(5), $C(3)-Ru(2)-O(5)$ 179.0(2), $P-Ru(2)-O(5)$ 89.9(1), $P-Ru(2)-O(5')$ 163.5(1).

101.26 MHz; 298 K) **8** +52.5; IH n.m.r. (CDC13; 250.13 MHz; 298 K) δ 2.4 (d, 6 H, J_{PH} 1.5 Hz, CH₃) and 7.0–8.0 (m, 48 H, C_6H_5 and C_6H_4); ¹³C-{¹H} n.m.r. (CDCl₃; 62.87 MHz; for numbering see Figure 1) δ 201.6 (d, CO, $^{2}J_{PC}$ 7.6 Hz), 198.5 (d, CO, $^{2}J_{PC}$ 6.7 Hz), 196.2 (d, CO, $^{2}J_{PC}$ 9.6 Hz), 185.0 (d, CO, $2J_{\text{PC}}$ 5.2 Hz), 170.2 [d, C(5,5'), $3J_{\text{PC}}$ 5.6 Hz], 161.9 [d, $C(12,12^{7})$, $^{2}J_{PC}$ 10.9 Hz], 145.9 (d, P–C_i, $^{1}J_{PC}$ 22.0 Hz), 144.3 $[s, C(23,23')]$, 141.9 (d, P–C_i, ¹J_{PC} 27.5 Hz), 133.7 [d, C(ll,ll'), **3Jpc** 3.6 Hz], 132.9 **[s,** C(l4,16,14',16')], 132.1 (d, P-C,, 'Jpc 11.3 Hz), 132.0 *[s,* C(l7,17')], 131.9 **[s,** C(13,13'], 131.1 (d, P-C,, 2Jpc 9.4 Hz), 129.8 **[s,** C(24,28,24', 28')], 128.5 (d, P-C_p, $\frac{4J_{\text{PC}}}{2.5\text{ Hz}}$), 128.4 [s, C(18,22,18',22')], 128.3 (d, P–C_p, ⁴J_{PC} 2.4 Hz), 128.1 (d, P–C_m, ³J_{PC} 10.7 Hz), 128.0 (d, P-Cm, 3Jpc 9.8 Hz), 127.9 *[s,* C(15,15')], 127.7 *[s,* C(25,27,25',27')], 126.5 **[s,** C(l9,21,19',21')], 125.2 [s, C(26,26')], 124.4 [s, C(20,20')], 101.9 [s, C(8,8')], 98.3 [d, $C(7,7')$, $5J_{PC}$ 2.4 Hz], and 15.1 [s, $C(10,10')$]. These suggested the presence of four terminal carbonyl groups, an opened phosphido bridge, and a new ligand system with two unique deshielded carbon atoms. Full details of the molecular structure (Figure 1) were revealed by a single-crystal X -ray diffraction study.[†] The molecule lies on a two-fold crystallo- $C(9,9')$, $4J_{PC}$ 4.7 Hz], 91.3 [d, $C(6,6')$, $4J_{PC}$ 2.5 Hz], 86.1 [d,

graphic axis passing through the centre of the $Ru(2)$, $Ru(2')$, *0(5),0(5')* ring. None of the metal-metal distances [Ru(1)- ---Ru(2) 3.8312(6), Ru(2)---Ru(2') 3.4501(7) A] are bonding, and a remarkable feature is that the two halves of the molecule are held together by only the two bridging oxygen atoms *O(5)* and *O(5').* We are unaware of any precedent for such an open chain Ru_4 structure in organoruthenium chemistry. Within each of the binuclear fragments, the two ruthenium atoms are bridged by an open phosphido group, $Ru(1) - P-Ru(2)$ 107.36(3)^o, and by a new organometallic moiety best described as a deprotonated and ortho-metallated **l-hydroxy-2,4,5-triphenyl-3-methylcyclopentadienyl** ligand. The five membered $C(5)$ — $C(9)$ ring system is η^5 -bound to Ru(l), with the C(6)-phenyl ring bound to Ru(2) *via* a o-bond to the *ortho* position $C(12)$ [Ru(2)– $C(12)$ 2.115(6) Å]. The oxygen atom *O(5)* acts as a three-electron donor to the two symmetry-related ruthenium atoms $Ru(2)$ and $Ru(2')$ such that all four metal atoms obey the eighteen-electron rule. The stereochemistry at $Ru(1)$ and $Ru(1')$ is typical for an η^5 -C₅R₅Ru(CO)₂X fragment; Ru(2) and Ru(2') are octahedral. The new cyclopentadienyl ligand is constituted from a molecule of diphenylacetylene, a CO group, and the original allenyl ligand (PhC=C=CH₂) of (1) which provides two ring carbon atoms and two substituents for the five-membered ring. Although the mechanism of formation of **(2)** has not been established, substituent connectivities indicate addition of alkyne and CO to the η^2 -co-ordinated double bond of the allenyl ligand. Furthermore, since complexes $n⁵-C₅H₅Ru (CO)(PR₃)(R)$ are known to undergo metallation readily,⁵ it is tempting to suggest that *ortho*-metallation of the phenyl ring of the allenyl fragment occurs subsequent to ring formation. The overall reaction to form **(2)** is reminiscent of the coupling of a Fischer-type carbene with CO and alkynes leading to 4-methoxy-l-naphthols, which has been developed into a useful synthetic strategy by Dotz.6 The formation of the cyclopentadienyl complex **(2)** in good yield from **(1)** and

 t *Crystal data:* $C_{80}H_{54}Ru_{4}P_{2}O_{10} \cdot 2C_{7}H_{8}$, $M = 1825.83$, monoclinic, space group C_2/c , $a = 14.123(2)$, $b = 20.352(4)$, $c = 28.070(4)$ Å, $\beta =$ $98.88(\tilde{1})^{\circ}$, $U = 7971(2)$ \AA^3 , $Z = 4$, $D_c = 1.521$ g cm⁻³, $\mu(\text{Mo-}K_{\alpha}) =$ 10.31 cm⁻¹, $F(000) = 3680$. Diffraction data were collected with a Syntex P₂, diffractometer (ω scans; 294 \pm 1 K). The structure solution (Patterson, Fourier methods) and refinement (full-matrix leastsquares; all non-hydrogen atoms anisotropic) were based on 4246 observed intensities $(I \ge 3\sigma(I))$ from 7032 measured data (2 $\theta \le 50^{\circ}$). Final *R* and R_w values were 0.036 and 0.040. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 $PhC₂Ph$ contrasts sharply not only with the sporadic appearance of cyclopentadienyl compounds as trace products in metal carbonyl-alkyne reactions7 but also with the coupling pathways observed for acetylenes with binuclear η^2 -bound alkynes^{2,8} and σ , η -acetylides.⁹ A significantly different chemistry for σ , η -allenyl species can thus be predicted.

We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support of this work.

Received, 11th February 1988; Corn. 8100520F

References

- 1 D. Nucciarone, N. J. Taylor, and **A.** J. Carty, *Organometallics,* 1986, *5,* 1179.
- 2 J. Holton, M. F. Lappert, R. Pearce, and P. **I.** W. Yarrow, *Chem. Rev.,* 1983, **83,** 135.
- 3 (a) **A.** Kuhn and H. Werner, J. *Organomet. Chem.,* 1979,179,421; (b) H. Werner, *Adv. Organomet. Chem.,* 1981, 19, 155.
- 4 See, for example, (a) D. L. Davies, J. C. Jeffrey, D. Miguel, P. Sherwood, and F. G. **A.** Stone, J. *Chem.* Soc., 1987, 454, and references therein; (b) **S. A.** R. Knox, *Pure Appl. Chem.,* 1984,56, 81; (c) E. L. Muetterties and J. Stein, *Chem. Rev.,* 1979, 79, 479; (d) W. **A.** Herrmann, *Adv. Organomet. Chem.,* 1982, **20,** 160; (e) J. E. Bradley, *ibid.,* 1983, **22,** 1; (f) R. *C.* Brady, **111,** and R. Pettit, J. *Am. Chem. SOC.,* 1981, 103, 1287.
- 5 M. I. Bruce, R. C. F. Gardner, and F. G. **A.** Stone, J. *Organomet. Chem.,* 1972, **40,** C39.
- 6 K. H. Dotz in 'Transition Metal Carbene Complexes,' Verlag Chemie, Weinheim, 1983, p. 209.
- 7 (a) W. Hubel in 'Organic Synthesis *via* Metal Carbonyls,' eds. I. Wender and P. Pino, Wiley Interscience, vol. **I,** 1968; (b) E. Sappa, **A.** Tiripicchio, and P. Braunstein, *Chem. Rev.,* 1983, **83,** 203.
- 8 (a) M. Green, P. **A.** Kale, and R. J. Mercer, J. *Chem. SOC., Chem. Commun.,* 1987,375; (b) S. **A.** R. Knox, R. F. D. Stansfield, F. G. **A.** Stone, M. **J.** Winter, and P. Woodward, J. *Chem. SOC., Dalton Trans.,* 1982, 173; (c) R. S. Dickson, G. D. Fallon, F. I. McLure, and R. J. Nesbit, *Organometallics,* 1987, 6, 215.
- 9 W. F. Smith, N. J. Taylor, and **A.** J. Carty, J. *Chem.* Soc., *Chem. Commun.,* 1976, 896.